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A numerical treatment of the natural convection and passive dispersion in
symmetrically interconnected tilted layers embedded in a rock which is subject to
a constant vertical temperature gradient is presented. Such a system is a faithful
model of configurations commonly found in the geophysical context. There, flow
movements and temperature distributions are closely connected to phenomena of
interest such as transport of contaminants and diagenesis. The important case of
large thermal conductivity of the rock compared with that of the material filling the
layer is discussed in order to show the decisive role of the temperature distribution
and the geometrical parameters on the convective flow. The present analysis treats
two cases, the fluid-filled layer and the saturated porous layer. Convective flows were
calculated for small Rayleigh numbers and the resulting velocity fields were included
in the analysis of the transport of a passive contaminant that was initially located
where layers connect with each other. Transport of contaminants in the isotropic
porous layer was studied by using a model which includes hydrodynamic dispersion
terms. How far the tracer transports through the layers and the rate the tracer enters
into the system were analysed. The influence of the angle of tilt has also been included.
The molecular diffusive Péclet number which relates convective to diffusive species
transport is closely associated to a considerable transporting rate, and for the porous
layer the hydrodynamic dispersion appears to be an important effect to consider.

1. Introduction
Fractured porous media are commonly involved in oil and water reservoirs,

there, the interaction between fracture networks is of relevance. Underground fluid
motion in these media may be caused by many different agents, including pressure
gradients, capillary forces and buoyancy; the latter acts due on the temperature- or
concentration-induced density differences. The fluid flow in these systems is relevant to
the development of important phenomena such as the transport of minerals, radiative
solutes or contaminants (Davis et al. 1985). Some consequences of such a transport
may be the cementation and dissolution of minerals in rocks, the changes in some
features of the layers and the eventual contaminant infiltration into water tables.
Time scales for the transport of passive species, diagenesis and other phenomena in
the geological field are strongly modified by the presence of convective flows even
when they are weak. It is convenient to give a summary of the thermal convection in
a single layer in order to contrast afterward the results found here.
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Fluid in the ground fills long tilted fractures embedded in rocks of geologic dimen-
sions which are subject to temperature gradients of the order of the normal geothermal
gradient estimated as 30–100 Kkm−1 (Wood & Hewett 1982). This condition may
drive a low-Rayleigh-number natural convection in the fracture with fluid velocity
currents of the order of 1 m per year. The heat transfer through the fracture does
not increase owing to this convection; nevertheless, over geologic time scales, the
mass flux accompanying this weak convection is able to transport heat and dissolved
materials a significant distance along the fracture (Shaughnessy & Van Gilder 1995).
In some systems such a process has been found to be enough to produce significant
porosity changes (Hewett 1986), and also it has been shown that diffusive mass
transfer is generally a negligible component of the total mass flux when characteristic
distances are greater than grain diameters (Wood & Hewett 1982). The study of
convective flow in single tilted layers includes two limit cases, the vertical and
horizontal layers embedded in a solid affected by a vertical temperature gradient,
which are commonly employed to model important geophysical phenomena. Vertical
layers are used to model convection in saturated fractured rock zones such as those
associated with faulting, while horizontal layers are considered for the analysis of
convection and heat transfer in the Earth’s upper mantle. For both cases, horizontal
(Riahi 1983) and vertical (Wang, Kassoy & Weidman 1987) porous layers, the onset
of convection is characterized by critical Rayleigh numbers which depend on the
layer to solid thermal conductivity ratio. Additionally, the study of a single tilted layer
embedded in a rock (Shaughnessy & Van Gilder 1995; Luna et al. 2002; Medina et al.
2002) yields valuable information about the nature of the thermal and superimposed
phenomena such as the dispersive processes of passive contaminants (Luna et al.
2004). The oil industry is interested in the subterranean fluid flow because about
50 % of the oil originally located in typical fractured reservoirs cannot be collected
by traditional (primary and secondary) recovery techniques, and this remaining oil is
the main objective of modern enhanced oil recovery methods. Many natural porous
systems are fractured and a deep understanding of them has become necessary. In
addition to oil reservoirs, many groundwater resources and geothermal fields are
also fractured. Thus, transport phenomena in fractured rocks have gained attention
because of the growing concerns about enhanced oil production, pollution, water
quality and geothermal power generation, among others. Additionally, in the last
few decades, fractured media have been studied more because of their usefulness in
designing insulation of radioactive waste, important heat and contaminant sources
for underground water. Finally, there exist serious problems related to the current
intense exploitation of groundwater and the increment of solute concentration in
aquifers owing to leaking repositories and use of fertilizers.

The basic configuration of fractured media considers the generic case of a single
straight fracture of infinite length embedded in an impermeable solid exposed to a
background temperature gradient. The seminal works by Woods & Linz (1992) and
Linz & Woods (1992) analysed convection and dispersion in infinite tilted fluid and
saturated porous layers, respectively. Woods & Linz (1992) found accelerated trans-
port of contaminants occurring in fluid-filled layers owing to the thermal convective
effect on the diffusive one. They showed that the dispersion is capable of transporting
a radioactive material, of half-life 104 years, tens of metres along a fracture within one
half-life; without dispersion, the material would diffuse only a few metres along the
fracture within the same time. Linz & Woods (1992) studied the transport of a passive
tracer through a tilted saturated porous layer of infinite extent. Under geophysical
conditions they found that dispersion not only enhances the ordinary diffusion of the
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tracers, but even dominates the spreading of passive particles in the flow. Furthermore,
they described the variation of porosity with time as a function of the background-
temperature gradient and the angle of tilt. The case of finite layers allows us to
demonstrate the enormous influence of the layer and rock matrix thermal conduct-
ivities on the flow patterns. Natural convection has been studied in infinite (periodic)
gently sine-like layers by Davis et al. (1985) and Hewett (1986), where indeed, the
contrast between thermal conductivities has been taken into account. Studies on these
layers were also extended to the porosity changes by dissolved matter in the fluid.

Symmetrically interconnected layers can be seen as a more complex case of a
single folded layer. The system constituted by two interconnected straight layers is
the simplest realization of fracture networks which yields results that are particularly
interesting for understanding important geophysical phenomena. The present paper
studies the problem of natural convection and passive dispersion in two interconnected
tilted layers embedded in a rock. Despite its apparent simplicity, this study represents
the first stage of work intended to give a better understanding of the transport
phenomena in large networks affected by vertical temperature gradients. Two different
kinds of interconnected tilted finite layers are analysed, the fluid-filled layers and the
saturated porous layers. In both cases, the convective velocity fields were calculated
for the small-Rayleigh-number regime and the influence of the angle of tilt was
also included. In spite of the geometrical simplicity, our results show features of the
convective flow that find application in passive dispersion phenomena in underground
reservoirs. Indeed, the present work is intended to estimate the role thick fractures or
layers play in transporting passive substances when the surrounding rock has a large
thermal conductivity compared with that one of the material filling the layers. The
resulting velocity fields were included in the analysis of the transport of a passive
contaminant that enters the system through the layer walls, but only in a small
region located where layers connect with each other. We are interested not only in
determining how far the tracer transports through the layers, but also the rate at which
the tracer enters the system. We include a discussion on the important differences
between finite and infinite layers with respect to transport phenomena features.

2. Statement of the problem
The geometry analysed in this study consists of a two-dimensional horizontal slab

of impermeable rock of finite width B and height H , where H � B . The rock contains
two interconnected layers (or a folded layer) of width d and length h which cross the
slab from base to base at an angle φ to the horizontal (figure 1a).

The rock thermal conductivity is ks and the material which fills the layer has a
thermal conductivity kf . The upper and lower bases of the slab are kept at constant
temperatures TC and TH = TC + �T , respectively. In the absence of the layers, a
vertical thermal gradient G = �T/H would be present in the slab. Thus, far away
from the layers it is expected that the isotherms will be horizontal, but near the
layer they must be modified by the effect of the layer itself. Given the large variety
of layers in an actual reservoir, the parameters Γ = d/h and κ = kf /ks are within
a wide range of values, both large and small compared to unity (Phillips 1991).
However, in the geophysical context, situations of enormous interest are those of a
rock matrix containing fluid layers of water or oil, or porous layers saturated with
either of those fluids. In such conditions, typical values are κ ∼ 0.1, but combinations
for which κ � 1 are also frequently found. Furthermore, typical values of porosity Φ

in matrices are about 0.04 and in a typical porous layer Φ is about 0.45. Under those



238 F. A. Sanchez and A. Medina

g

h h

TC

n2

n1

s

d

s

ks

y1

y3

y2

x3
x2 x′2 x′3

x′1

y′1
y′3

y′2

φφ

x1

H H

L

G
F

E

A DB C

L

B

(a)

(b)

Symmetry plane

Contaminant surfaces 

Figure 1. (a) Schematic of the physical model and coordinate systems. (b) Schematic of the
region on the left-hand side.

conditions the matrix to layer permeability ratio is of order 10−4. Thus, the matrix
appears as almost impermeable with respect to its inner porous layer. Here, the rock
matrix is considered as impermeable and cases corresponding to κ/Γ � 1 are studied
in detail.

The present work can be seen as a local treatment of the general case of mul-
tiple parallel fractures, for instance, when multiple strata were simultaneously and
permanently deformed. There pervious and impervious structures (with different rock
properties such as thermal conductivity, permeability, fluid saturation) are present
alternately, which yields structures like the one we studied here.

2.1. Heat conduction in the rock

As shown in figure 1(a), symmetry exists between the right-hand side coordinate
systems (1′, 2′, 3′) and their corresponding systems at the opposite side (1, 2, 3); thus
for simplicity, we just analysed the last ones, the left-hand side, i.e. the region ADFG
in figure 1(b). The temperature distribution T1 in the region ABFG obeys the heat
diffusion equation, ∇2T1 = 0, with the boundary conditions:

T1 = TC on FG, T1 = TH on AB,

T1 = T , ∂T1/∂n1 = κ∂T /∂n1 on BF,

∂T1/∂x1 = 0 on AG,

⎫⎪⎬
⎪⎭ (2.1)

where T is the temperature within the layer. Moreover, in the triangular solid region
CDE the heat diffusion equation, ∇2T2 = 0, is solved with the conditions:

T2 = TH on CD; ∂T2/∂y2 = 0 on DE,

T2 = T , ∂T2/∂n2 = κ∂T /∂n2 on CE.

}
(2.2)
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2.2. Convection in the fluid layer

The steady-state flow in the fluid layer is modelled by continuity, momentum and
energy equations, which are, respectively,

∇∗ · u∗ = 0, (2.3)

(u∗ · ∇∗)u∗ = − 1

ρ
∇∗p + ν∇∗2u∗ + β(T − TC)g, (2.4)

(u∗ · ∇∗)T = αf ∇∗2T , (2.5)

where u∗ =(u∗, v∗) is the two-dimensional velocity field and it is assumed that the
fluid has kinematic viscosity ν, density ρ, thermal expansion coefficient β , and
thermal diffusivity αf ; g is the gravity acceleration vector pointing downward, and
∇∗ = i∂/∂x∗ + j∂/∂y∗. We considered constant fluid properties, steady-state flow,
and the Boussinesq approximation had been applied. This set of equations was
solved considering the impermeable and no-slip conditions on all the walls. Previous
experimental studies showed that there is no mass exchange between the two tilted
layers, at least for the small Rayleigh numbers here studied (Sánchez-Cruz 2005;
Sánchez, Pérez-Rosales & Medina 2005). Therefore, in our numerical treatment, an
impermeable imaginary wall on the symmetry plane (where layers connect each other)
is assumed to exist. This last condition is valid only when the layers are symmetrically
interconnected and both layers have the same length. If these requirements are not
fulfilled, the resulting convection patterns in the layers are not similar each other
and an interaction between the layers must exist. For the fluid layer, the temperature
boundary conditions are T = TH at the lower wall BC, zero heat flux at the imaginary
wall EF, and continuity for temperature and heat flux at the fluid to solid contact
surfaces BF and CE.

2.3. Convection in the saturated porous layer

The flow in the fluid-saturated isotropic porous layer of permeability K is modelled
by the continuity, energy and Darcy’s equations. Constant fluid properties and steady-
state flow are assumed, and the Boussinesq approximation is used. Consequently, as
for the previous case, the continuity equation is stated by (2.3) where now u∗ = (u∗, v∗)
is the filtration velocity field, and the energy equation is given by (2.5), with αf changed
by αm which is the effective thermal diffusivity of the porous medium. Darcy’s equation
is (Nield & Bejan 1999):

u∗ = −K

ν

(
1

ρ
∇∗p − β (T − TC) g

)
. (2.6)

The fluid which saturates the porous layer has kinematic viscosity ν, density ρ,
thermal expansion coefficient β . All the walls are assumed to be impermeable. As
above, it is considered that because of the symmetry there is no flow at the imaginary
wall located on the symmetry plane in the joining zone. The temperature boundary
conditions are the same as in the previous case.

2.4. Transport of passive species in the layers

The transport of contaminant species can be accelerated owing to the presence of
macroscopic flows. Then, there exists a superposition of diffusive and convective flows.
In general, variations in the species concentration cause changes in the fluid density
and viscosity, which affect the flow regime that depends on those properties. However,
at relatively low concentrations, the ideal tracer approximation is sufficient for most
practical purposes (see Bear 1972). An ideal tracer consists of an inert substance with
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respect to its liquid and solid surroundings that does not affect the liquid properties.
In order to estimate how the transport phenomenon of a passive contaminant takes
place through the interconnected layers, the assumption of an ideal tracer is used for
the fluid layer and the saturated porous layer.

As diffusion occurs under the effect of a macroscopic stream, the equation for the
transport of the contaminant inside the fluid layer is:

∂C∗

∂t∗ + (u∗ · ∇∗)C∗ = D∇∗2C∗, (2.7)

where C∗ is the mass concentration, t∗ is the time, and D is the diffusion coefficient of
the species in the fluid. Then, as the velocity field is known, the dispersion is directly
determined without any approximation.

The walls are impermeable except for a small region near the upper corner where it
is assumed that the passive tracer is present as a contaminative surface with C∗ = Csat ,
where Csat is the saturation concentration. The contaminative surfaces are located on
the upper walls of the layers at s � x∗

3 � h + d tan(φ) (see figure 1a). In order to
avoid difficulties in the numerical treatment arising from the real layer geometrical
shape BFEC of figure 1(b), the boundary condition on BC was simplified into a
convenient form. A scale analysis shows that ul , the local characteristic velocity in
the fluid-filled layer, is given by ul ∼ gβd2�TlΓ/ν, where �Tl is the local temperature
difference across the layer. Then, ul/uc ∼ �Tl/�T , where uc is the characteristic
velocity originated by a temperature difference across the layer of the order of �T .
In our case, the convective motion near the lower edge (the wall BC) is negligible
since �Tl/�T � 1 when x∗

3 → 0, as discussed in § 5.1. Thus, diffusion must drive the
transport phenomena therein. Additionally, since BF and BC are impermeable walls,
∂C∗/∂y∗

3 = 0 on BF , and ∂C∗/∂n∗ = cos(π/2−φ)∂C∗/∂x∗
3 +sin(π/2−φ)∂C∗/∂y∗

3 = 0,
where ∂/∂n∗ denotes the derivative normal to the surface BC. The region limited by
BC and x∗

3 = 0 is of the order of d2/ tan φ, hence for slender layers with φ 	= 0 such
a region is very small compared with the whole layer and consequently ∂C∗/∂x∗

3 → 0
at x∗

3 = 0. Therefore, we considered the layer to begin at x∗
3 = 0, and the region where

x∗
3 < 0 was neglected. After this truncation, the layer shape was modified, but no

major effects on our solution were expected to appear since the contaminant source,
the intense concentration gradients and significant convective velocity were distant
from the x∗

3 = 0 virtual wall. In this case the boundary conditions are:

∂C∗/∂x∗
3 = 0 at x∗

3 = 0, ∂C∗/∂y∗
3 = 0 at y∗

3 = 0,

∂C∗/∂y∗
3 = 0 at y∗

3 = d, 0 < x∗
3 < s,

C∗ = Csat at y∗
3 = d, s � x∗

3 < h + d tan(φ),

∂C∗/∂n∗
3 = 0 at x∗

3 = h + y∗
3 tan(φ), 0 < y∗

3 < d.

⎫⎪⎪⎬
⎪⎪⎭

(2.8)

where n∗
3 denotes the derivative normal to the surface EF . In the second case, the

saturated porous layer, the dispersion of the passive contaminant is more complex.
As the mixing process is accelerated, improving the diffusion phenomenon within the
small pores in the layer, the modelling equation results in (Bear 1972):

Φ
∂C∗

∂t∗ + (u∗ · ∇∗)C∗ = Φ∇∗ · (D · ∇∗)C∗, (2.9)

where, C∗ is the contaminant mass concentration, Φ is the porosity and D is the tensor
of dispersion. A model for D corresponding to isotropic porous media presented by
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Bear (1972) yields:

D =

⎡
⎢⎢⎣

D

τ
+

αlu
∗2 + αtv

∗2

Φ |u∗|
(αl − αt ) v∗u∗

Φ |u∗|
(αl − αt ) u∗v∗

Φ |u∗|
D

τ
+

αlv
∗2 + αtu

∗2

Φ |u∗|

⎤
⎥⎥⎦ , (2.10)

where αl and αt are the longitudinal and transversal dispersivities, respectively, and D

is the binary molecular diffusion coefficient in the absence of the porous medium for
the contaminant into the fluid, and τ is the tortuosity of the porous medium. From the
continuity equation v∗ ∼ Γ u∗, and we assumed that αl ≈ αt ≈ αD , where αD is the
dispersivity coefficient. As Γ � 1, then D is simplified to:

D =

(
D

τ
+

αD|u∗|
Φ

)
I, (2.11)

where I is the identity tensor. Substituting (2.11) into (2.9):

Φ
∂C∗

∂t∗ + u∗
3

∂C∗

∂x∗
3

+ v∗
3

∂C∗

∂y∗
3

= Φ

(
D

τ
+

αD |u∗|
Φ

) (
∂2C∗

∂x∗2
3

+
∂2C∗

∂y∗2
3

)

+ αD

(
∂ |u∗|
∂x∗

3

∂C∗

∂x∗
3

+
∂ |u∗|
∂y∗

3

∂C∗

∂y∗
3

)
. (2.12)

The boundary conditions are the impervious wall conditions, and again it is assumed
that the contaminant enters the layers at the upper corner where the concentration is
C∗ =Csat , the same as the problem of the fluid layer.

3. Dimensionless equations
A scale analysis shows that the suitable non-dimensional variables are:
For the solid regions:

x1 = x∗
1/L, y1 = y∗

1/H, θ1 = (T1 − TC)/�T, x2 = x∗
2/H,

y2 = y∗
2 tan(φ)/H (0 < φ < π/2) θ2 = (T2 − TC)/�T,

�T = TH − TC, κ = kf /ks, Γ1 = H/L, Γ2 = 1/ tan(φ).

⎫⎪⎬
⎪⎭ (3.1)

For the layer region:

x = x∗
3/h, y = y∗

3/d, u = u∗
3/uc, v = v∗

3 /vc,

Γ = d/h, θ = (T − TC)/�T,

}
(3.2)

where uc and vc are the characteristic velocities, and α is the corresponding thermal
diffusivity (αf or αm). In the fluid layer uc = αf RaΓ/d and vc = Γ uc, where Ra
is the Rayleigh number, Ra = gβ�T d3/(αf ν). In the saturated porous layer, we
find similarly the characteristic filtration velocities uc = αmRa/d and vc = Γ uc where
Ra = Kgβ�T d/(αmν).

So, the resulting dimensionless equations for the left solid regions are:

Γ 2
i

∂2θi

∂x2
i

+
∂2θi

∂y2
i

= 0 (i = 1, 2), (3.3)

where 1 and 2 correspond to the external solid region and to the triangular solid
region, respectively. Their corresponding boundary conditions couple the thermal
problem in the rock with the thermal problem inside the cavity. The coupling,
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however, does not appear at leading order when κ/Γ � 1. Then the contact surfaces
appear as approximately adiabatic and the boundary conditions become ∂θ1/∂n1 = 0
and ∂θ2/∂n2 = 0 at the contact surfaces, where ∂/∂n1 and ∂/∂n2 denote the derivatives
normal to the contact surfaces (see figure 1a). Thus, temperature boundary conditions
at the contact surfaces are simplified and the solid regions are solved independently
from the fluid region.

If we introduce the streamfunction, u = ∂ψ/∂y, v = −∂ψ/∂x, and the Prandtl
number, Pr = ν/αf , the dimensionless equations for the fluid layer corresponding to
(2.4) and (2.5) are:(

∂ψ

∂y

) [
∂3ψ

∂x∂y2
+ Γ 2 ∂3ψ

∂x3

]
−

(
∂ψ

∂x

) [
Γ 2 ∂3ψ

∂x2∂y
+

∂3ψ

∂y3

]
=

Pr

RaΓ 2

∂4ψ

∂y4

+
PrΓ 2

Ra

∂4ψ

∂x4
+

2Pr

Ra

∂4ψ

∂y2∂x2
+

Pr sin (φ)

RaΓ 3

∂θ

∂y
− Pr cos (φ)

RaΓ 2

∂θ

∂x
, (3.4)

(
∂ψ

∂y

)
∂θ

∂x
−

(
∂ψ

∂x

)
∂θ

∂y
=

1

Γ 2Ra

(
Γ 2 ∂2θ

∂x2
+

∂2θ

∂y2

)
. (3.5)

After we introduced the stream function, the dimensionless equation for the motion
in the saturated porous layer corresponding to (2.6) differentiated is:

Γ 2 ∂2ψ

∂x2
+

∂2ψ

∂y2
= sin (φ)

∂θ

∂y
− Γ cos (φ)

∂θ

∂x
, (3.6)

and the dimensionless energy equation corresponding to (2.5) is:(
∂ψ

∂y

)
∂θ

∂x
−

(
∂ψ

∂x

)
∂θ

∂y
=

1

Γ Ra

(
Γ 2 ∂2θ

∂x2
+

∂2θ

∂y2

)
. (3.7)

There are two characteristic times, tc, for the species transport process within the
fluid layer, one time is related to the diffusive process, tc = d2/D, and the other is
the convective time, tc = d/uc. Our analysis is focused on the effect of the convective
motion, so we made time dimensionless with the diffusive time, hence t = t∗D/d2.
The concentration was made non-dimensional with the saturation concentration of
the tracer in the fluid, C = C∗/Csat . Therefore, the dimensionless tracer transport
equation for the fluid layer corresponding to (2.7) is:

∂C

∂t
+ Γ Peu

∂C

∂x
+ Γ Pev

∂C

∂y
= Γ 2 ∂2C

∂x2
+

∂2C

∂y2
, (3.8)

where Pe = ucd/D is the diffusive Péclet number, which is the ratio between the
convective transport and the diffusive one. In the tracer transport process within
the saturated porous layer, the diffusive characteristic time is tc = τd2/D and the
convective characteristic time is tc = d/uc, thus t = t∗D/(τd2). The dimensionless
tracer dispersion equation for the saturated porous layer corresponding to (2.12) is:

∂C

∂t
+

(
PeΓ

Φ
u − PeΓ 2

ΦPeα

∂ |u|
∂x

)
∂C

∂x
+

(
PeΓ

Φ
v − Pe

ΦPeα

∂ |u|
∂y

)
∂C

∂y

=

(
1 +

Pe

Peα

|u|
Φ

) (
Γ 2 ∂2C

∂x2
+

∂2C

∂y2

)
, (3.9)

where Pe = τucd/D is the diffusive Péclet number and Peα = d/αD is the dispersive
Péclet number.
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In both cases, fluid-filled layer and saturated porous layer, the dimensionless
boundary conditions are:

∂C/∂x = 0 at x = 0, ∂C/∂y = 0 at y = 0,

∂C/∂y = 0 at y = 1, 0 < x < s/h,

C = 1 at y = 1 s/h � x � 1 + ε,

∂C/∂n3 = 0 at x = 1 + εy, 0 < y < 1,

⎫⎪⎪⎬
⎪⎪⎭

(3.10)

where ε = Γ tan(φ) and the initial concentration (at t = 0) within the layer is C = 0.

4. Numerical method
Since ∂θ2/∂n2 = 0 on EC, see figure 1, the solution in the region CDE is θ2 = 1.

For solving the fluid-layer-region problem, (3.4) and (3.5) were linearized assuming
that (∂ψ/∂x) and (∂ψ/∂y) were known from a previous iteration. So, (∂ψ/∂x) and
(∂ψ/∂y) are substituted by (∂ψ0/∂x) and (∂ψ0/∂y), which are renewed after each
iteration. In order to define a suitable mesh for our non-rectangular geometries, we
introduced a simple non-orthogonal set of transformations. For the left-hand external
solid region:

ξ1 = x1/ (1 + ε1η1) where ε1 = Γ1 tan(π/2 − φ),
η1 = y1,

}
(4.1)

and for the fluid region:

ξ = x/(1 + εη) where ε = Γ tan(φ),
η = y.

}
(4.2)

So, for the external solid region, the resulting diffusion equation from (3.3) for i = 1
is:

2ε2
1ξ1

(1 + ε1η1)2
∂θ1

∂ξ1

+

((
Γ1

1 + ε1η1

)2

+

(
ε1ξ1

1 + ε1η1

)2)
∂2θ1

∂ξ 2
1

− 2ε1ξ1

1 + ε1η1

∂2θ1

∂ξ1∂η1

+
∂2θ1

∂η2
1

= 0, (4.3)

with the boundary conditions:

∂θ1/∂ξ1 = 0 for ξ1 = 0, 0 � η1 � 1,(
Γ1 cos(−π/2 + φ)

1 + ε1η1

− ε1ξ1 sin(−π/2 + φ)

1 + ε1η1

)
∂θ1

∂ξ1

+ sin(−π/2 + φ)∂θ1/∂η1 = 0 for ξ1 = 1, 0 � η1 � 1,

θ1 = 1 for η1 = 0, 0 < ξ1 < 1,

θ1 = 0 for η1 = 1, 0 < ξ1 < 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.4)

In the fluid layer, the equation of motion (3.4) at the non-orthogonal frame is:

A
∂4ψ

∂ξ 4
+ B

∂4ψ

∂ξ 3∂η
+ C

∂3ψ

∂ξ 3
+ D

∂2ψ

∂ξ 2
+ E

∂3ψ

∂ξ 2∂η
+ F

∂4ψ

∂ξ 2∂η2
+ G

∂ψ

∂ξ

+ H
∂2ψ

∂ξ∂η
+ I

∂3ψ

∂ξ∂η2
+ J

∂4ψ

∂ξ∂η3
+ K

∂3ψ

∂η3
+ L

∂4ψ

∂η4
= M

∂θ

∂ξ
+ N

∂θ

∂η
, (4.5)
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where functions A to N are given in Appendix A, (A 1)–(A 14). The energy
equation (3.5) is:

R
∂θ

∂ξ
+ S

∂2θ

∂ξ 2
+ T

∂2θ

∂ξ∂η
+ U

∂2θ

∂η2
+ V

∂θ

∂η
= 0, (4.6)

where functions R to V are given in the Appendix, (A 1)–(A 20). The boundary
conditions at the non-orthogonal frame are:

∂ψ

∂η
=

∂ψ

∂ξ
= ψ = 0 for

⎧⎪⎨
⎪⎩

ξ = 0, 0 � η � 1,

ξ = 1, 0 � η � 1,

η = 0, 0 < ξ < 1,

η = 1, 0 < ξ < 1,

(4.7)

θ = 1 for ξ = 0, 0 � η � 1,(
Γ cos(−φ)

1 + εη
− εξ sin(−φ)

1 + εη

)
∂θ

∂ξ

+ sin(−φ)∂θ/∂η = 0 for ξ = 1, 0 � η � 1,

θ = 1 for η = 0, 0 < ξ < 1,

θ = θ1 (ξ )|ξ1=1 for η = 1, 0 < ξ < 1.

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(4.8)

In the saturated porous layer, the equation of motion (3.6) at the non-orthogonal
frame is:

A
∂ψ

∂ξ
+ B

∂2ψ

∂ξ 2
+ C

∂2ψ

∂ξ∂η
+ D

∂2ψ

∂η2
= E

∂θ

∂ξ
+ F

∂θ

∂η
, (4.9)

where functions A to F are given in Appendix A, (A 21)–(A 26). The energy equation
(3.7) is the same as stated by (4.6) where functions R to V for this case are given in
the Appendix, (A 27)–(A 31). The boundary conditions for the saturated porous layer
are (4.8) and:

∂ψ

∂η
= 0 for

{
ξ = 0, 0 � η � 1,

ξ = 1, 0 � η � 1,
(4.10)

∂ψ

∂ξ
= 0 for

{
η = 0, 0 < ξ < 1,

η = 1, 0 < ξ < 1.
(4.11)

In both the fluid-filled layer and the saturated porous layer, the species transport
equation resulting from (3.8) or (3.9) is:

∂C

∂t
+ R

∂C

∂ξ
+ S

∂2C

∂ξ 2
+ T

∂2C

∂ξ∂η
+ U

∂2C

∂η2
+ V

∂C

∂η
= 0. (4.12)

For the fluid-filled layer, functions R to V are given by (A 32) to (A 36) and for the
saturated porous layer by (A 37) to (A 41). In both cases, the boundary conditions
are:

∂C/∂ξ = 0 for ξ = 0, 0 � η � 1,(
Γ cos(−φ)

1 + εη
− εξ sin(−φ)

1 + εη

)
∂C

∂ξ

+ sin(−φ)∂C/∂η = 0 for ξ = 1, 0 � η � 1,

∂C/∂η = 0 for η = 0, 0 < ξ < 1,

∂C/∂η = 0 for η = 1, 0 < ξ < 0.95,

C = 1 for η = 1, 0.95 � ξ < 1,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(4.13)
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Figure 2. (a) Dimensionless temperature distribution in the rock. (b) Dimensionless tem-
perature profiles along the lower (η =0) and upper (η = 1) contact surfaces; the temperature
distribution that would exist along the contact surfaces if κ were equal to unity is included.

where it has been considered that the contaminative surfaces extend from ξ = 0.95
to ξ = 1. After applying the variable transformations our non-rectangular geometries
are transformed into squares, so, 0 � ξ � 1 and 0 � η � 1, which allowed us to use
a simple mesh. Numerical solutions were obtained by using the conventional centred
finite-difference method for the motion problem. For the species transport problem,
diffusive terms used centred finite differences and convective terms used an UPWIND
scheme when Pe � 3 and centred finite differences when Pe < 3. A mesh of 125 × 30
nodes was used, and a residual lower than 10−6 for each equation was the convergence
criterion.

5. Results
5.1. Temperature distribution in the rock

A sample numerical solution for φ = π/4 is shown in figure 2(a). Far away from the
layer, the vertical temperature gradient is constant (horizontal isotherms), and as we
approach the layer, the isotherms are strongly affected. Moreover, the existence of a
single isotherm in the triangular solid region is evident. The reduced temperatures
along the lower (η = 0) and upper (η = 1) contact surfaces are given in figure 2(b).
These are the boundary conditions for the material in the layer. In order to observe
how the presence of the layers affects the temperature distribution in the rock,
figure 2(b) includes the temperature distribution that would exist along the contact
surfaces if κ were equal to unity. In our particular case, where κ � Γ , the temperature
differences between opposite points on the contact surfaces are of order �T and
vary with ξ , and the critical change (equal to �T ) takes place at the upper corner
(ξ = 1). This peculiar situation is substantially different compared with what happens
in the generic case of a single infinite tilted layer. In such a case, the temperature
difference between opposite points on the contact surfaces remains constant along
the slot (in both kinds of slots, fluid-filled or filled with a saturated porous medium)
and it can be estimated from the angle of tilt, the Rayleigh number and the thermal



246 F. A. Sanchez and A. Medina

1.0(a)

0.5

0 0.5 1.0

η

1.0(b)

0.5

0 0.5 1.0

η

ξ

0.9
0.8 0.7 0.6 0.5 0.4 0.3

0.2
0.1

Figure 3. (a) Dimensionless temperature distribution within the fluid layer. (b) Streamlines
within the fluid layer. In this case, Ra = 1, Pr = 0.3645, Γ = 0.01, φ = π/4 and κ � Γ .

conductivity ratio (Linz & Woods 1992; Woods & Linz 1992). On the other hand,
for finite fractures the temperature difference between opposite points on the contact
surfaces varies along the slots (Luna et al. 2002) because of the end effects, and
in the present case such a condition is specially notable. The heat flux across the
finite layer, which has been neglected in the formulation of equations, is of order
kf �T/d . This flux is small compared with the characteristic heat flux through the
solid, ks�T/H , when κ � Γ , as was advanced before. If this condition is not satisfied,
then the heat transfer problems in the solid and in the layer are coupled and should
be solved simultaneously. The angle of tilt φ plays an important role in the thermal
phenomenon. Far away from the layers, the vertical temperature gradient is constant
(horizontal isotherms), and since the isotherms must be normal to the contact surfaces,
as we approach the layer the isotherms are affected, strongly for small values of φ

and weakly for large ones. Also, this is evident near the slot ends owing to the end
effects are intensified when the angle of tilt becomes smaller.

5.2. The fluid layer

5.2.1. The fluid flow

Figure 3(a) presents the temperature distribution within the fluid layer in the non-
orthogonal dimensionless coordinate system. The thermal diffusion is the main mean
for the heat transfer in the layer, as a result of the weak convective flow, Ra =1.
The isotherms are only slightly affected by the flow. Indeed, since the Rayleigh
numbers here analysed are small, 10−1 � Ra � 10, the resulting weak convective flows
do not affect the isotherms at all. So, figure 3(a) was found to be valid for that
range of the Rayleigh number. The resulting flow is clearly two-dimensional as can
be seen in figure 3(b), which shows the result for the stream function in the non-
orthogonal coordinate system. Figure 3 corresponds to conditions commonly found in
geothermal systems. The Prandtl number used for the numerical solution, Pr = 0.3645,
corresponds to a typical value for heavy-oil at reservoir conditions, according to
experimental measurements by Luna (2003), which makes this result particularly
interesting. As could be expected from the temperature distribution in the rock, the
flow arises longitudinally near the lower wall (where θ = 1) throughout the layer and
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Figure 4. (a) Longitudinal velocity profiles at different locations within the fluid layer.
(b) Transversal velocity profile at the middle plane, η = 0.5. In this case, Ra =1, Pr = 0.3645,
Γ = 0.01, φ = π/4 and κ � Γ .

descends near the upper wall where the temperature is lower. Close to the upper
corner, the flow suddenly changes its direction while at the lower region the change
in direction is very slow and gentle. The longitudinal dimensionless velocity profiles
within the layer are presented in figure 4(a). These profiles are symmetrical with
respect to the middle plane η = 0.5, and as the fluid is warmed while it travels along
the lower wall, the flow is faster at the upper region. The transversal velocity profile at
the middle plane, η =0.5 is shown in figure 4(b). This profile shows how fast the flow
changes its direction at the upper corner and how slow this movement at the lower
region is. Then, the convection motion within our finite slot allows us to observe
the significant intensity of the transversal velocity, which is not considered in the
analysis of infinite fractures since this component of the velocity appears because of
the end effects. Therefore, the transport phenomena through the transversal direction
in finite slots are due to diffusion and convection, whereas in the case of infinite slots
there exists only diffusion through the transversal direction. The angle of tilt causes
important effects on the shape of the convection cell. The strength of the convection
motion in a single infinite slot embedded in solid slab is a maximum when φ = π/4
(Luna et al. 2002), whereas for the present case, the intensity of convection augments
when the angle of tilt increases, but it should be noted that in order to have two
layers, φ cannot be equal to π/2.

Because the layer is under the conduction regime, it was found that the shape of the
convective patterns and the dimensionless velocity are not affected by the Rayleigh
number. Therefore, figures 3 and 4 are valid for 10−1 � Ra � 10, when Pr =0.3645,

Γ = 0.01 and φ = π/4. The effect of the Rayleigh number on the actual velocity is
considered in the definition of the dimensionless velocity itself.

5.2.2. Transient transport of a passive tracer

As was mentioned before, the present analysis was intended to estimate the effect
of the convective motion on the transport of a passive substance. In particular, our
interest is focused on the transport of inert substances, such as nitrogen, through fluid
layers and porous layers. As we know the convective motion, we are able to estimate
the transport of the ideal tracer.
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Figure 5. Transversal average concentration, Cav =
∫ 1

0 Cdη, within the fluid layer for different
values of the dimensionless time. Pe = 10; φ = 45◦. The contaminative surface extends from
ξ = 0.95 to ξ = 1, where layers connect with each other.

The way the tracer travels through the fluid layer with time is presented in figure 5. It

shows the transversal average concentration, Cav =
∫ 1

0
C dη, within the fluid layer for

different values of dimensionless time. With time, the tracer travels farther and the con-
centration near the upper corner (where 1−ξ → 0) increases. The tracer is transported
along the slot, but the species accumulates near the corner. This increment in Cav im-
plies that ∂C/∂η decreases near the place where the tracer enters, so that the tracer flux
through the contaminative surface diminishes with time. Additionally, the tracer trans-
port along the slot is more effective at the beginning of the contaminant process and
diminishes with time as a result of the gradual tracer accumulation near the corner.

5.2.3. Effect of convection on the tracer transport

The ratio between convective and diffusive transport of the species is given by
the Péclet number, and the effect of such a parameter on the tracer transport is
presented in figure 6. Five different conditions of Péclet number, including the case of
pure diffusion (Pe = 0), are shown in figure 6(a). All of them correspond to φ = π/4
and the same dimensionless time, t = 100, after the tracer transport began near the
upper corner. The convective flow enhances the contaminant transport along the slot,
and according to (3.8) it must occur whenever the product Γ Pe increases. Despite
of this improved transport the amassed tracer near the corner increases slightly
with Pe. The rate at which the tracer enters the system is given by the Sherwood
number on the contaminative surface, Sh =hDd/D, where hD is the species convective
coefficient, d is the layer width and D is the tracer diffusion coefficient in the fluid.
The Sherwood number was computed from the numerical results considering that:
Sh =

∫ 1

0.95
[−∂C/∂y] dξ/(1−0.95). The Sherwood number diminishes with time, which

is shown in figure 6(b), where the effect of the Péclet number on the Sherwood
number is presented. As mentioned, before, Cav increases near the corner as time goes
by, hence the tracer flux through the contaminative surface diminishes with time as
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Figure 6. (a) Effect of the Péclet number on the tracer transport in the fluid layer. The case
of pure diffusion (Pe = 0) is included t = 100; φ = 45◦. (b) Effect of the Péclet number on the
Sherwood number at the contaminative surface with time φ = 45◦.
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Figure 7. Effect of the angle of tilt on the tracer transport. (a) Transversal average
concentration in the fluid layer for different values of φ after a dimensionless time t = 100. —,
Pe= 10; - - -, 100. (b) Effect of the angle of tilt on the Sherwood number at the contaminative
surface with time.

a result of that gradual tracer accumulation. Also the increment of Péclet number
leads to the decrement in Sh owing to the particular location of the contaminative
surfaces. Although the convective motion is relatively fast near the upper corner,
there is a stagnant region where layers connect with each other, near the place where
the contaminative surfaces are located. If they were located where the convection
effect is important, the Sherwood number would rise with the increment of Pe.

5.2.4. Effect of the angle of tilt on the tracer transport

Since the tilting angle φ affects the temperature distribution in the rock, this angle
itself has an important effect on the transport phenomena within the layer. Figure 7(a)
shows the transversal average concentration in the fluid layer for different values
of φ, when the dimensionless time is t = 100. Cases of pure diffusion (Pe =0), small
(Pe = 10) and large (Pe = 100) Péclet numbers are shown. The tracer transport through
the layer is enhanced with the increment of the angle of tilt, since the convective
motion becomes more intense as the angle of tilt increases. This effect is more evident
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Figure 8. (a) Dimensionless temperature distribution within the saturated porous layer.
(b) Streamlines within the porous layer. In this case, Ra = 1 × 10−5, Γ =0.01, φ = π/4, κ � Γ .

at large Péclet numbers. The rate at which the tracer enters the system through the
contaminative surface is also affected by the angle of tilt (see figure 7b). The Sherwood
number diminishes with time and the angle of tilt affects both cases, weak convection
(Pe =10) and dominant convection (Pe = 100, not shown) in a similar way. The decre-
ment of the Sherwood number with time also depends on the angle of tilt since the
accumulated tracer near the contaminative surface changes with φ (figure 7a), and
the least tracer accumulation at 1 − ξ → 0 corresponds to φ = 60◦.

5.3. The saturated porous layer

5.3.1. The convective flow

Figure 8(a) shows the temperature distribution within the saturated porous layer in
the non-orthogonal coordinate system. Again diffusion is the main mean for the heat
transfer as a result of the small Rayleigh number, Ra =10−5. Figures 8(a) and 3(a)
look similar because both cases are under the small-Rayleigh-number regime, it means
that the resulting weak convective flows just slightly affect the isotherms. Computed
streamlines in the non-orthogonal coordinate system are presented in figure 8(b).
The flow arises longitudinally near the lower wall (where θ = 1) throughout the layer
and descends near the upper wall. Close to the upper corner, the flow suddenly
changes its direction while at the lower region the change in direction is very slow
and gentle. Longitudinal dimensionless velocity profiles in the saturated porous layer
are shown in figure 9(a). The linear velocity profiles are symmetrical with respect to
the middle plane η = 0.5, and the flow is faster at the upper region. The transversal
velocity profile at the middle plane, η = 0.5 is presented in figure 9(b), where it is
shown how fast the flow changes its direction at the upper corner and how slow this
movement is at the lower region. In the finite layer here analysed, the transversal
velocity has an important effect on the shape of the convection cell. The intensity of
the convection motion changes along the slot, then it is expected that the transport
phenomena take place under different conditions which depend on the location within
the finite fracture. From the convective flow of figure 8(b) it is clear that the transport
phenomena in the transversal direction are mainly by diffusion in 0.7 < ξ < 0.95, both
convection and diffusion are important in 0 < ξ < 0.7, while convection transport is
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Figure 9. (a) Longitudinal velocity profiles at different locations within the saturated porous
layer. (b) Transversal velocity profile at the middle plane, η = 0.5. In this case, Ra =1 × 10−5,
Γ = 0.01, φ = π/4, κ � Γ .

dominant near the upper corner except at the stagnant region located where layers
connect with each other. These particular circumstances do not occur within an
infinite layer because for such a condition the fluid flow is one-dimensional. Our finite
porous layer is under the conduction regime, consequently, the shape of the convective
patterns and the dimensionless velocity are not affected by the Rayleigh number. So,
figures 8 and 9 are valid for the whole range studied here, 10−7 � Ra � 10−3, when
Γ = 0.01 and φ = π/4. Again, the effect of the Rayleigh number on the actual velocity
is considered in the definition of the dimensionless velocity itself. Moreover, since the
angle of tilt affects the shape of the convection cell, this angle also influences the
transversal transport phenomena.

5.3.2. Transient transport of a passive tracer

The tracer transport in the saturated porous layer has two parameters, to consider.
The diffusive Péclet number, Pe, which expresses the convection to diffusion ratio,
and the dispersive Péclet number, Peα , which represents the dispersive effect itself,
the effect obtained by combining convective and diffusive transports in porous media
at the pore scale. Suitable values for the dispersive Péclet number are not easily
estimated owing to the scarcity of dispersivity coefficients data. Lake (1989) presents
a compilation of experimental dispersivity coefficients; however, there are serious
discrepancies between measurements corresponding to the same material since these
data depend on the characteristic size of the sample. Laboratory measurements where
the sample sizes are of the order of 1 m show dispersivity data of the order of 10−3 m.
In this work it is assumed that Peα � 1, this means that the dispersivity, which is
the typical homogeneity length of the porous structure, is equal to or lower than
the characteristic length d . The hydrodynamic dispersion is the result of the Taylor
dispersion due to macroscopic fluctuations of the velocity on the length scales where
the porous structure must be considered inhomogeneous, and it can be neglected
when the characteristic Péclet number of the porous medium, Pehom = V l/(DΦ) is
small (Linz & Woods 1992). Here V is the maximum velocity of the flow and l is a
typical homogeneity length of the porous structure. In the present case Pehom =Pe/
(ΦPeα), thus in our particular conditions the hydrodynamic dispersion can be
neglected if Pe/(ΦPeα) � 1, which also agrees with the information given by (3.9).
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Figure 10. Transversal average concentration, Cav =
∫ 1

0 C dη, within the porous layer for
different values of the dimensionless time. The contaminative surface extends from ξ = 0.95 to
ξ = 1, where layers connect with each other. Pe= 1; Peα = 10; φ = 45◦.
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Figure 11. (a) Effect of the Péclet number on the tracer transport in the porous layer. The
case of pure diffusion (Pe =0) is included. t = 100. (b) Effect of the Péclet number on the
Sherwood number at the contaminative surface with time φ = 45◦; Peα = 10.

The way the tracer travels through the porous layer as time goes by is presented

in figure 10. It shows the transversal average concentration, Cav =
∫ 1

0
Cdη, within the

porous layer for different values of dimensionless time. With time the tracer travels
farther, but the concentration near the upper corner (where 1 − ξ → 0) increases.
Again, this increment in Cav near the place where the tracer enters causes decrement
of the tracer flux with time. Therefore, the tracer transport along the slot is more
effective at the beginning of the contaminant process and diminishes with time.

5.3.3. Effect of convection on the tracer transport

The effect of the Péclet number on the tracer transport is presented in figure 11.
Four different conditions, including the case of pure diffusion (Pe = 0), are shown
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Figure 12. Effect of the dispersive Péclet number, Peα , on the tracer transport. Solid (Pe= 1)
and dashed (Pe= 10) lines correspond to small and large convective effects, respectively.
(a) Transversal average concentration in the porous layer after a dimensionless time t = 100.
(b) Sherwood number at the contaminative surface with time φ = 45◦.

in figure 11(a). All curves correspond to φ = π/4 and the same dimensionless time,
t = 100. It is remarkable the tracer transport enhancement along the slot because
of the convective flow; according to (3.9), the convection transport improves when
Γ Pe/Φ increases. Additionally, with the increment of the convection effect, the
accumulated tracer near the corner also rises. Thus, the Sherwood number diminishes
with time; figure 11(b), shows effect of the Péclet number on the Sherwood number.
The increment of Pe leads to the decrement in Sh once again, because of the
particular location of the contaminative surfaces; they are within the stagnant region
where layers connect with each other. Furthermore, the tracer flux through the
contaminative surface diminishes with time due to the gradual tracer accumulation
near the upper corner.

5.3.4. Effect of dispersion on the tracer transport

Figure 12(a) shows the effect of the dispersive Péclet number on the tracer transport.
Solid and dashed lines correspond to small (Pe = 1) and large (Pe = 10) convective
effects, respectively. For small convective effects, the increment of dispersive Péclet
number diminishes the tracer transport along the layer. This seems to be a condition
for which the convection contribution is blocked by the dispersive transport. Indeed,
while the passive tracer is taken down by convection, some of this substance diffuses
towards the ascending stream because of the high dispersivity, which finally results
in a blocking mechanism by dispersion. On the other hand, when the transport is
mainly due to convection, Pe = 10, the increment of the dispersive Péclet number
enhances the tracer transport. Hence, hydrodynamic dispersion does not necessarily
improve the tracer transport through the slot its influence depends on the convection
conditions. Furthermore, for small and large convection effects the tracer average
concentration near the contaminative zone is larger at low Peα , which means that
dispersion diminishes the tracer accumulation therein.

Then the dispersive effect is also important for the rate the tracer enters into the
system (figure 12b). Again, solid and dashed lines correspond to small and large
convective effects, respectively. When convection is weak the dispersive effect on
the Sherwood number is small, but for dominant convection, the dispersive Péclet
number affect the rate the tracer enters the system indeed. At the beginning of the
contaminant process the tracer flux through the contaminative surface is larger at
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Figure 13. Effect of the angle of tilt on the tracer transport in the porous layer. (a) Transversal
average concentration for different values of φ, at a dimensionless time t = 100. Peα =10; —,
Pe= 1; - - -, 10. (b) Sherwood number on the contaminative surface as time goes by. Pe = 10;
Peα = 10.

low Peα , and diminishes with time due to the gradual tracer accumulation near the
corner. Then, for large times, the increment of the dispersive effect causes a smaller
decrement in Sherwood number with time.

5.3.5. Effect of the angle of tilt on the tracer transport

Figure 13(a) presents the transversal average concentration along the slot for
different values of φ, at a dimensionless time t = 100. The cases of pure diffusion
(Pe =0), small (Pe = 1) and large (Pe =10) Péclet numbers are shown. The tracer
concentration in the layer rises with the increment of the angle of tilt since the
convective motion becomes more intense as φ increases. This effect is more evident at
large Péclet numbers. The rate the tracer enters the system through the contaminative
surface diminishes with time, and such rate is only slightly affected by the angle
of tilt when convection is weak (not shown), however, for dominant convection the
effect of φ is considerable, see (figure 13b).

6. Conclusions
The steady-state thermal convection and the passive tracer transport within

symmetrically interconnected tilted layers, also assumed to be a folded finite layer in
a rock slab, have been presented. Two cases were studied, the fluid-filled layer and the
isotropic saturated porous layer, both embedded in an impervious rock affected by a
vertical temperature gradient. The present study considers the case of a high contrast
between the thermal conductivities of rock and layers. The thermal distribution in
the rock near the layers is greatly affected because of the sudden change in the
thermal conductivity occurring there. The temperature difference between opposite
points along the contact surfaces varies with the longitudinal direction. This particular
situation is substantially different from that one which appears in the generic case of a
single infinite tilted layer. In such a case, the temperature difference between opposite
points on the contact surfaces remains constant along the slot, whereas in finite layers
such temperature differences vary along the slots because of the end effects, and for
the present case such a condition is specially remarkable. Also because of the end
effects, the angle of tilt φ plays an important role in the thermal process within the
rock, particularly when φ becomes smaller.
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The convective flows within our finite layers were computed for the small-Rayleigh-
number regime. Based on previous experimental experience (Sánchez-Cruz 2005;
Sánchez et al. 2005), we assumed there was no mass exchange between the two
interconnected layers. The numerical results show the significance of the transversal
velocity, whose intensity changes along the slot. These circumstances do not occur
within an infinite fracture because for such a condition the fluid flow is one-
dimensional, the transversal velocity component appears because of the end effects.
Therefore, the transport phenomena through the transversal direction in finite slots
are due to diffusion and convection whereas in infinite slots there exists only diffusion.
Additionally, the strength of the convection motion in an infinite slot embedded in
a solid slab is maximum when φ = π/4, whereas in the present case the intensity of
convection augments when the angle of tilt increases.

The transport of a passive tracer that is initially located where layers connect with
each other was studied. Despite the weak convective flow, the motion in the layers
serves as an effective way of transporting polluting agents and species. The transport
of passive substances is strongly modified by convective flows with respect to the
pure diffusive transport. The tracer travels along the slot but the species accumulate
near the upper corner because the fluid motion is very slow therein. Thus, the tracer
transport along the slot is more effective at the beginning of the contaminant process
and diminishes with time due to the gradual tracer accumulation near the corner. The
convective flow enhances the contaminant transport when Γ Pe increases. In porous
layers, the increment of the Péclet number leads to the decrement in Sh owing to
the particular location of the contaminative surfaces. The hydrodynamic dispersion
does not necessarily improve the tracer transport, its influence depends on the
convection conditions, and it can be neglected when Pe/(ΦPeα) � 1. The tracer
concentration in the layer increases with the increment of the angle of tilt, specially
at large Péclet numbers, since the convective motion becomes more intense as the
tilting angle increases.

For demonstration purposes, let us consider typical values used in geological estima-
tions. Assuming water-filled layers, it would be reasonable to suppose β=3×10−4K−1,
ν = 10−6 m2 s−1, αf =10−7 m2 s−1, d = 3.4 × 10−3 m, Γ =10−2, D = 10−9 m2 s−1 and
φ = π/4 (Woods & Linz 1992). The geothermal gradient near the surface of the
earth is about G = �T/H = 2.5 × 10−2 Km−1, therefore in this particular case Ra =
gβGd4/(ναf Γ ) = 10 and Pe = 10. Thus, at the steady state, we estimate the maximum
longitudinal velocity to be 1.5 × 10−6 m s−1, and 13.5 days after the contaminative
process began the tracer concentration is expected to be 10 % of the saturation
concentration at 0.13 m from the contaminant source; under pure diffusive conditions,
such a concentration would be located at 0.07 m from the contaminant source within
the same time. Moreover, we predict the average species convective coefficient on the
contaminative surface to be hD = 1×10−7 m s−1 at the beginning of the contaminative
process, and 13.5 days after then it must diminish to hD = 9×10−9 m s−1. In the case of
saturated porous layers, let us assume there is water in an unconsolidated sandstone
for which it would be reasonable to consider β = 3 × 10−4 K−1, ν = 10−6 m2 s−1,
αm = 3.5 × 10−7 m2 s−1, K = 10−10 m2, d = 2 × 10−2 m, Γ = 10−2, D = 10−9 m2 s−1,
αD = 2 × 10−3 m, Φ = 0.25, τ = 2.4, and φ = π/4 (Lake 1989; Linz & Woods 1992),
then Ra = KgβGd2/(ναmΓ ) ≈ 10−3, Pe ≈ 1 and Peα = 10. At the steady state, the
maximum longitudinal velocity is estimated to be 20 cm per year approximately, and
3 years after the contaminative process began the tracer concentration is equal to
10 % of Csat at 0.6 m from the contaminant source; with mere diffusive transport
such a concentration would be located at 0.46 m from the contaminative source
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within the same time. The average species convective coefficient is estimated to be
hD = 2 × 10−8 m s−1 at the beginning of the contaminative process, and 3 years after
then it must diminish to hD = 2 × 10−9 m s−1.

So, we have shown useful results for improving the estimation of transport pheno-
mena within slender layers, which are related to other important geophysical processes,
e.g. diagenetic alteration, all of them usually concerning the oil and underground water
pollution interested industries. The assumptions here considered restrict the results to
cases where the layers are embedded within an ideal impervious matrix. Therefore,
additional work regarding the actual interaction between the low-permeability porous
matrix and its inner layer, as well as the resulting relevant implications in the
geophysical context is currently in progress.
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Appendix A. Functions referenced in the main text
Functions A to N in (4.5) are as follows:

A = − Pr

Ra(1 + εη)4

(
ε4ξ 4

Γ 2
+ Γ 2 + 2ε2ξ 2

)
, (A 1)

B =
4Prεξ

Ra(1 + εη)3

(
ε2ξ 2

Γ 2
+ 1

)
, (A 2)

C = − 12Prε2ξ

Ra(1 + εη)4

(
ε2ξ 2

Γ 2
+ 1

)
+

1

(1 + εη)3

[(
∂ψ0

∂y

)
(Γ 2 + ε2ξ 2)

+

(
∂ψ0

∂x

)
(εΓ 2ξ + ε3ξ 3)

]
, (A 3)

D = − 12Prε2

Ra(1 + εη)4

(
3ε2ξ 2

Γ 2
+ 1

)

+
1

(1 + εη)3

[(
∂ψ0

∂y

)
4ε2ξ +

(
∂ψ0

∂x

)
(6ε3ξ 2 + 2εΓ 2)

]
, (A 4)

E =
8Prε

Ra(1 + εη)3

(
3ε2ξ 2

Γ 2
+ 1

)

− 1

(1 + εη)2

[(
∂ψ0

∂y

)
2εξ +

(
∂ψ0

∂x

)
(Γ 2 + 3ε2ξ 2)

]
, (A 5)

F = − 2Pr

Ra(1 + εη)2

(
3ε2ξ 2

Γ 2
+ 1

)
, (A 6)

G = − 24ε4ξPr

RaΓ 2(1 + εη)4
+

2ε2

(1 + εη)3

[(
∂ψ0

∂y

)
+ 3εξ

(
∂ψ0

∂x

)]
, (A 7)

H =
24ε3ξPr

RaΓ 2(1 + εη)3
− 2ε

(1 + εη)2

[(
∂ψ0

∂y

)
+ 3εξ

(
∂ψ0

∂x

)]
, (A 8)

I = − 12ε2ξPr

RaΓ 2(1 + εη)2
+

1

1 + εη

[(
∂ψ0

∂y

)
+ 3εξ

(
∂ψ0

∂x

)]
, (A 9)
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J =
4εξPr

RaΓ 2(1 + εη)
, (A 10)

K = −
(

∂ψ0

∂x

)
, (A 11)

L = − Pr

RaΓ 2
, (A 12)

M = − Pr

RaΓ 2(1 + εη)

(
εξ sin(φ)

Γ
+ cos(φ)

)
, (A 13)

N =
Pr sin(φ)

RaΓ 3
. (A 14)

For the case of the fluid layer, functions R to V in (4.6) are:

R =

(
∂ψ0

∂y

)
1

1 + εη
+

(
∂ψ0

∂x

)
εξ

1 + εη
− 2ε2ξ
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, (A 15)
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− 1
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(
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)2

, (A 16)

T =
2εξ

RaΓ 2(1 + εη)
, (A 17)

U = − 1

RaΓ 2
, (A 18)

V = −
(
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where
∂ψ0
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∂ψ0

∂y
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− εξ
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∂ψ0

∂ξ
. (A 20)

Functions A to F in (4.9) for the porous layer are:

A =
2ε2ξ

(1 + εη)2
, (A 21)

B =

(
εξ

1 + εη

)2
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(
Γ
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C = − 2εξ
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, (A 23)

D = 1, (A 24)

E = −
(

sin(φ)εξ
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)
, (A 25)

F = sin(φ). (A 26)

For the case of saturated porous layer, functions R to V in (4.6) are:

R =

(
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, (A 29)
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U = − 1

Γ Ra
, (A 30)

V = −
(

∂ψ0

∂x

)
. (A 31)

Functions R to V in (4.12), for the fluid-filled layer, are:

R =
Γ Pe

1 + εη
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U = −1, (A 35)

V = Γ Pev, (A 36)

and functions R to V in (4.12), for the saturated porous layer, are:
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Shaughnessy, E. J. & Van Gilder, J. W. 1995 Low Rayleigh number conjugate convection in
straight inclined fractures in rock. Numer. Heat Transfer A 28, 389.

Taylor, G. I. 1953 Dispersion of soluble matter in solvent flowing slowly through a tube. Proc. R.
Soc. Lond. A 219, 186.

Wang, M., Kassoy, D. R. & Weidman, P. D. 1987 Onset of convection in a vertical slab of saturated
porous media between two impermeable conducting blocks. Intl J. Heat Mass Transfer 30,
1331.

Wood, J. R. & Hewett, T. A. 1982 Fluid convection and mass transfer in porous sandstones – a
theoretical model. Geochem. Cosmochem. Acta 46, 1707.

Woods, A. W. & Linz, S. J. 1992 Natural convection and dispersion in a tilted fracture. J. Fluid
Mech. 241, 59.




